
4 P 

TECHNICAL REPORT 

OTS PRICE / 

XER.OX 

RIAS 

P R O L O N G A T I O N S  AND S T A B I L I T Y  

I N  D Y N A M I C A L  SYSTEMS 

BY 

YJ. A U S L A N D E R  a n d  P. SE IBE-RT 



PROLONGATIONS AND STABILITY I N  

DYNAMICAL SYSTEMS 

J. Auslander and P. Seibert 

September 1963 

Research Ins t i t u t e  for Advanced Studies (RIAS) 
7212 Bellona Aveme 

Baltimore 12, Maryland 



PrOlon&ions ana stabillty in 
Dynamical System 

bY 

J. Auslander*and P. Seibert* 

Research Institute for Advanced Studies 

aud University of htuylaxd 

fit roduct Ion. 

In this paper we pI.esent a unified theory of stabi l i ty  and boundednese 

in dynamical systems by means of prolongations. 

w88 first used, i n  a very special sense, by Poincare and, subsequently, by 

The notion of prolongation 
I 

Bendixson i n  the i r  studies of the  asymptotic behavior of trajectories i n  tbe 

phne. I n  a much mo= genersl sense, prolongations were considered by Dla 

[U, 131, who recognized the i r  close relation t o  the concept of stability in 

the sense of Liapur~ov. Consider the map which associates t o  every point in 

the state space the positive semi-orbit issuing from it. 

tion is obtained by extending this mp t o  one which i s  "closed", meaning 

The first prolonga- 

that it maps every closed set onto a closed set. By alternating extensions 

t o  mps which are transitive and closed respectively, we obtain a seqIx?nce of 

more and more extensive pro.longations and, following Ura, associate t o  each 

of these a concept of stability: A compact invariant se t  is called Q - s a b h  

if it is invariant under the prolongation Q. 

In particular, the- exists a smallest prolongation which is both closed 

and transitive. The corresponding concept of s tabi l i ty  is called absolute 

stability. This notion turns out t o  play a key role jn another context, mmly 

* This report was supported i n  part by the United States Air Force through tbh 

nautics ani Reproduction in 
Guvernment. 



in connection v l th  the "generellzed Liapunov function", introduced by 

Errbov [Is]. 

cbm&mdzed by the existence of a generalized (not necessarily continuoue) 

Xdapunov function, It has been known tbat  them exis t  cases of stable sets 

for vhich no continwus Liapunm function can be found (e.g., cer ta in  c r i t i c a l  

points i n  the plane of the "center-focus" type). We prove (Theorem 6) t h a t  

the existence of a continuous Liapunov function is  nern-sary and sufficient 

for absolute stabil i ty.  

While Liapunov s t a b i l i t y  of a compact &marLent set can be 

It bas been observed [14]$ that between the concepts of s t s b l l l t y  (IJI 

the sense of Liapunm) a& boundedness (-range s tab i l i ty ) ,  a bind of d m l l t y  

&sa 

space. 

boundednees theomn. 

In  (3rapter VII, some aspects of asymptotic s t a b i l i t y  are discussed. 

In  Chapter VI we formellze t h i s  d w l i t y  by compactifyiag the phase 

In this  way we obtain fmm every s t ab i l i t y  theorem a correspondlng 

It 

is shown that asymptotic s t ab i l i t y  implies absolute s tab i l i ty .  On the other 

hand, the dual concept, namely u l t h t e  baundedness, impUes the existence 

of a compct invariant s e t  which is aspp to t i ca l ly  stable i n  the large. 

asymptotic Stabi l i ty  cannot be characterized in  terms of invariance under a 

while 

proloqption, it is pruved t h a t  it can indeed be characterized by the pmperty 

of being the  Imge of one of Its neighborhoods under a map obtained from a 

prolongation by deleting the positive semi-orbit. 

In the concluding chapter we study s t ab i l i t y  under persistent perturba- 

t b n s  or, 88 we call It more briefly, "s t r ic t  stability". !be dynamical system 

here is aesumed t o  be given by a differential system in euclidean n-space. 

It is shown that s t r i c t  s t ab i l i t y  can be characterized in term of invsfiance 



under a closed, trsneit ive lpap which k s  essential  properties in c o m n  

with the pmlongations. 

can be carried over. 

place between asymptotic and absolute stabil l ty.  

the relation between s t r i c t  and asymptotic s tabi l i ty ,  hoever, requires the 

development of some additiollal methods and wSU therefore be published 

reparately. 

Thua so- results concerning absolute s tab i l i ty  

Moreover, s t r i c t  s tab i l i ty  occupies an Intermediate 

The complete analysis of 

Definitions a d  notations. 

1. In this  section, we establish our notations, and also recall the 

bs ic  notions in the theory of dynamical systems. X WlU denote a locaUy 

cormpact metric space wlth metric 

tion t h a t  X is second countable.) E A (  X, A' wlll denote tbe closure 

of A# A' the interior of A, and F A  the cauplement of A. If E > 0, 

S*(A) - [s E XI d(y, A) C E 1. A set will be called relatively compact I2 i ts  

closum is compect. The boundary of a s e t  A we denote by a. 

d. (In Chapter VI we shall ass- in addi- 

a m c s l  system o r  continuous flow Y o n  x, we mean a continuous - 
lpsp a : X x R + X  sstisfylng 

Ppically, aynamical systems ar ise  from the solution cupyes of autonomoue sys- 

tem of different ia l  equations, * = f(x), if f satisfies suitable hypothe- 

ses, 110, p. 17- . Howver, except for Chapter mII, %e shall consider dym- 

mica1 systems absc-rsctly, vithout explicit reference t o  a system of differen- 

tm equations. AS gene& references, consult 121, [81, [lo], and [151. 



U x B X, the set (dx, t) It o R) ie called tbe orbi t  or traJectory 

through x, and xill be denoted by dx). The positive semi-orbit, denoted 

by T(x), is the set [dx, t)lt Z 0). The negative semi-orbit y-(x) is 

defined edtogouely.  be onrega llmit set of x, n(x), IS tb s e t  

[ T ( r ( x ,  t)) It 2 0) j clearly n(x) I s  tbe set of points y for which the= 

a i e t a  a aeq\lence 

Slmthr ly ,  the alpha llmit set of x, A(x), I s  defined t o  be n(y'(a(x, t ) )  It S 0). 

[tn] of real nurnbers with tn + +o and T(X, t n )  +yo 

A subset A of X is cs l led  invariant if ~ ( x ,  t)  E A whenever x E A 

6d t l e  real. If x E A and t h 0 bgly ~ ( x ,  t) E A# we say that A 

l a  positively l r r v a a n t .  We remark that the alpha snd omega limit se t s  of a 

point are Invariant. 

In conformity with c m n t  pmctlce, we shall suppl.ess the map K nata- 

tionally; ii x E X and t E R, we write xt in place of ~ ( x ,  t). 

2. In thla psper we shall frequently be concerned vlth maps f r o m  X 

t o  8 (the s e t  of all Subset6 of X). 

Q(A) - u ( Q ( ~ )  ~x c A}. v 8 family Q~ : x +,2x (a E 9)  is given, by 

U(&la B 4} we mean the map Q : X 3 9 defined by Q(x) = U(%(x) la E 4 ). 
w, ii m ~8 a positive integer, the rmnp Q~ : x +z? is defineit in- 

ductively by Q1 = Q, 

If Q : X +$, and A c  X, then 

and Qm = Q. Qn". 

II. The first  prolongation. 

3. I8t x E X, and let y(x) denote the  neighborhood filter of X. 

lrollowing tJm [E], (131, we define tbe first prolongation of x, denoted 

w I)+), bY 



Zt irr ea8y t o  see that y E D1(x) If and only If there exist  seqmnces 

t B X and t 2 0 8UChthe;t X n + X  and X n t n - + Y o  The first pro low-  n n 
tion m y  be regarded as an extension of tbe orbit  closure of X. Indeed, it 

6n smaA& comeq-*=ee er' t& & f M t i C ?  t*% 7 7 $1 < T q X ) .  

7 

is p-ded bj the dynmical system in the plane &fired by the  dFFferentia1 

A simple example of a non-trivial prolongation (that is, D1(x) # r (x) ) 

eqmtions 2, = xl, 3t2 = -x2; 

M n .  Iet x = (0, -1). Then r (x) consists of the points (0, y), 

this l a  a system with a saddle point a t  the 
7 

with -1 d y S 0, vfiereas DL(x) 

of the 5-sxis.  

contains, in addition t o  r t (x ) ,  a l l  points 

A second example I s  furnished by the d i f f eEn t i a1  equation (in polar 

coordlmtes) 

the origin and a Umit cycle, stable fmm the inside and unstable from the 

3 = r(r - l)', & = 1, which has an unstable c r i t i c a l  point a t  

outside, at r = 1. 

cloned unit disc. 

4. We observe 

tion? 

a) If A is 

the boundary of A. 

b) If (",I 
and if xn +x, yn 

c )  Y A is 

In t h i s  case, the first prolongation of th origin is the 

the following elenrentary properties of the first prolongs- 

comgact, and x E A, then D1(x) ( A, o r  D1(X) meets 

and (yn) ale sequences in X, such that  yn E: D1(xn), 

y, then y E D1(x). 

compsct, D1(A) is closed. (This 1s a consequence of b)). 
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It ire n;Ot difficult to verify these properties directly. However, 

t b y  w i l l  follow immediately from developments in Chapter ZII. 

3. The first prolongation is intimately connected with the notion of 

Id~%puuuv stabil i ty.  

irr said t o  be Llapunov - &?le (or simply - stable) if f o r  every neighborhood 

U of M, there is a neighborhod W of M wlth f(W) c U. It is nat 

dlfffcult t o  show that  

In the general Case (M no% necessarily stable), D1(M) may be Fegarded as 

a k s u m  of instabi l i ty"  of M. 

We recall that the compact positively invariant set M 

M is stable if a d  only If D1(M) = M ([Z, p. 3411). 

Zn this connection, IE have: 

pleomm 1. E M be a compact positively invariant set. D1(M) 

ie the intersection of a l l  closed positively invariant ne~iborhoods of M. 

Prooi. Let y E D1(M), and let W be a closed posit ively imriant 

rreighborhood of M. Choose x E M such that y E D,(x). Then 

H w  suppose y jf D1(M). Then y 4 D1(x), f o r  each x E M. !f!herefore, 

lf x E M, t h e e  is a W(x) E %. (x) with y y+(W(x)). By compactness of 

of M, 

Iet W* = g(V).  F is 8 closed positively invariant neighborhood of 

l4 and yjfW*. The proof is completed. 

there exist xl, .. ., \ E M such that M (  W = U[W(xi) I 14, ..)# k). 

Corollary 1. The compact positively invariant set M is Li.apunm stable 

if and OW if every neighborhood of M contains a positively Invariant 

neicrhbor;.ood of M. 



m. Abstrsct prolongations and semiprolongatlow. 

6. Ue now wish t o  gemrallze the notion of pmlongatlon, To~ard t h i s  

end, ue define two opemtors, f a d  J,  on the class of maps from x 

Q i edef inedby 

rn note that y E +&(i) if a d  om if tbl.e are sequences [x,) and 

(yn) with yn E Q(x,) such that y + y  and xn +x. Also y E J Q ( x )  n 
ii and only if there ani? points xl, ..., x in X with x - xl, y - xn, n 
and x e Q(x,) (J  - 1, ..., n-1). 8 1  

T b  operstor f l n a y  be consitieEd a closure operator, in the follow- 

and only if y E Q(x). Then It I s  readily verified t h a t  y € o d  Q(x) if and 

ing sense. Iet s denote the relation in x defined by: (x, y) E s ii 

anly If (x, Y) E 5. 

!BE following stateme ‘ - 2  follow easiJy  fran the definition of d and 

operators. 

(b) If A l e  coarpect, &Q(A) is closed. 

(e) Suppose Y ie a continuous mal 

y 6: Q(x) luplies V(y)  5 V(x). Then y E 

V(r) V ( 4 .  - 



Definition. An abstract prolongation (or simp* pmlongation) is a 

a p  Q t I( +$ aatierylng 

(a) Y x e ]tr t h n  r+(x)C Q(x) .  

(a) dQ - Q= 
(r) Y A I s  a compact subset of X, and x E A, then either 

Qb) C AI or Q(x) nreets tbe boundary of A. 

If the map Q : X -3  satisf ies  (a) and (r) above, but not necessarily 

(e), it ~ l l l  be called a - semi-prolongation. 

~f Q u a semi-pmbngstion, J Q  
traneitive . 

= Q, then Q is said t o  be 

7. The following l e 5  indicates how, g,ven a collection of semi- 

pmbngations, new prolongations and semi-pmlo~gations can be formed. 

amma 1. (i). ~f ( ~ ~ 1 ,  (p E a), is a collection of semi-prolongations, 

then Q (U) % and q2 81% semi-prolongations and Q = Q 1 °  Qp - 
I s  a semi-prolongation. 

s a semi-prolongation, J Q  is a semi-prolonp;ation and 



4 

(IU) If Q is a semi-prolongation, it followa f r o m  (i) and (ii) t h a t  

9$ Q l a  a semi-prolongation. We show that 8 Q is a prolowtion.  Since 

?(x) c Q ( x )  c &(x), ~roperty (a) holds, and elme a2 = 4 (p) is 

satisfied. W e  show t h a t  (r) holds. Iet x E A, a compact subset of X. 

fi is clear t h a t  we need only consider t& case in which Q(x) c A, but 

@&) VA. ~f x E a, then x E &(x> n a ~ ,  and tbre is nothing t o  

prvve. Therefore, suppose x E Ao and le t  y E &(x) with y 4 A. Then 

them a m  sequences (xn] and {yJ with +x, yn E Q(x,), and 

yn +yo We my assum xn E A, d yn 4 A (since A in cloeed). Row, 

rirrce Q is a semi-prolo~~gation, there exist y: E and slnce 

bA IE c o w c t ,  IR may 86s- y; -BY* E aA. Then 

the P m f  of (r) is cmpleted. 

Theorem 2. Let  M be a c m p c t  subset of X, and l e t  Q be an abstract 
7 

Emlongation. Then Q(M) = M if and only if, whenever W is a neighborhood 

of M, there is a neighborhood U - of M such tbat Q(U) c W. 

-- 
- 

-of. Suppose Q(M> = M, and euppose the= is a neighborhood Y of 

M, such that  for every neighborhood U of 24, Q(U) (? W. It I s  no loss of 

generality t o  assume that W l a  cmpc t .  



a- 

Than there exist sequences [x,] and (yn), with yn d Q(xn), 

%+MI and yn$ W, S i n c e  M ie c-t, we may ass- that \ + x  E: M, 

pmperty (r) in the  derinition of prolongstion, them exist 

r; o q(xn) n bu, and since au is compsct, ZR mtry ass- that 

y; +ym 6 W. Thea y* E: = Q(x) c Q(M> = M, which is a coltmdic- 

tion. 

To pruve the converse statement, suppose that y 4 M. Let W be a 

Ireighborhood of M such that y 4 U, and l e t  U be a neighborhood o f .  M 

via Q(U) C Y. m n ,  Q(M) C Q(U) C u, 80 y 4 Q(M). Themfore 

Q(M) c M, and since M( Q(M), the proof is cariplt?ted. 

ComuSry 2. E M be a compact subset o f  X and let Q be a tranai-  

t ive  prolongation. Then - Q(M) = M if and only if M possesses a fundamental 

8ystern of compact nei&borhoods (U,) such t h a t  Q(Un> = Uno 

m e a ,  if [Un) is any fundamxrtal system of neighborhoods, choose 

% corqpsct and s m h  t h a t  Q(%) c Wn, and define Un = Q(Nn). 

IB. Thehigh e r  prolongations a d  s tab i l i ty  of  order a. 

9. If x f IC, l e t  Eo(x) be f(x), the positive semi-orbit of X. 

Clearly Eo is a t ransi t ive semi-prolongation. Then, by Ijemna 1, 

8 = k k f E  is a prolongation, and indeed it is equal t o  Dl, as defined 

in  Chapter SI. We define El = J D 1 ,  and D2 = A1. 0 

How, l e t  a be any ordinal number. We define the prolongation Da 

lndwtively. Buppose f o r  every ordinel @ >a, the  prolongstion D b a ~  B 
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-u- 

Observe that y E Da(x) If and only If t&re are seqwncee (5) and 
% (r,) in X v l th  xn +x, Y, -w, and yn e D ( 1, Bn a= 
pn 'h 

ordinal nuuhrs less than a, and kn a m  positive integers. 
* 

By Iel.spa 1, E and Ea are semi-prolonQgtlons, and therefom D is a * B 
a prolongation. Obseme that if p <a, we c Ea< Da. U a 

* 
is a successor orilinal, Ea - Ea4, 

!Beorem 3. E r denote. the f i r s t  uncountable ozdlnal number. Then: 

h f .  (i) kt y d D x . Then there are sequences [x,), [yn] in $ 1  
X, anb a sequence [pn] of ol.dinal nunibens, such that pn < r, yn E E (xn), 

5 +x ,  and y, 4 y. Iet f! be an ordinal number such that 

pn < p < p + 1 < y. Such ordinals exist, IS, p. X I .  Then y, E E (x ), 

Bn 

B n  
and Y E Dp++). 

(ii) We first show t h a t  D la t rans i t ive ,  or, what is the same thing, t 
t ha t  D F = D I L  Suppee that Y E  D P ) ,  and z E D,.(y). Ii3t B <  f such 

t ha t  Y E  D ( x )  and e E D (y). Then z B D (x) (  E (x) (  DP). Hence we 

-& = A r = D 7  A simple induction 
B B B B 

haw E r = P B n r = D 1 ,  Then Dtvl - t 

Dr- show tbat if f > r, Dr8 = 

*)meee a= essentially the sam as the pmlonptions 
ever, U m  includes the semi-pmlongatlons Ep, as the Da among hie 

of Iha rl.31. Bow- 

transfinite scqmnce (I$); therefore our s y e t e m  of nmbering differs  f r o m  his. 
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Ilk shall frequently write D inetead of D Ey !Theorem 3, r' $.=& = D; therefore D is the smalleat closed t ransi t ive map con- 

taining the  .pusitlve semi-orbit. 

10. Definition. Iet M be a compact positively invariant set, and 

let a be an ordinal number. M .  is said t o  be stable of order a, o r  

a-stable, If' Da(M) = M. 

E M is a-stable for every ordinal number a, then M is said t o  

be absolutely stable. 

meorem 3 tells us that M is absolutely stable If aPi only if M l a  

stable of o d e r  y', where r denotes th? first mountable ordinal. 

Xate that s t a b i l i t y  of order 1 is the same thing as Uapunov stabi l i ty .  

Theorem 4, [13]. - kt M be a compact positively invariant set. Then the 

following stateuerrts are equivalent: 

(i) M is stable of order a. 

(U) - I%' W I s  a neighborhmd of M, there exists a neighborhood U of 

M such t h a t  Da(U) c W. 

Proof. !Fhis is an  fmrnediate consequence of Theorem 2. 

U. We conclude t h i s  cbapter with some ex.anples which will Uwtrate 

the notions of prolongation and s tab i l i ty  of order a; 

191-1941. 

[cf. aleo 13, pp. 

 he examples a= a n  special cases of the equation 

H + f(x2 + P2)K + x = 0. 
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2 2 'Po every zero of the function f(r ) = t(x2 + f ) there co.1.responda 
2 a lirait cycle x2 + n2 - r . !L%e orbits between two  neighboring l i m i t  cycles 

an spirals with declleasing o r  increasing distance fmm the orlgin, depending 

tlponthe sign of f. The compact Invariant set M under consideration is 

tbe origin. 

6/-2\ for o s r P i, ani i e t  i ioj  = 0, (figure -2 r 
6 )  bt r t r  J = - r ~ i n  

1). !&en D1(0) = (0}, so the origln is stable of order 1. For n a posi- 

is an invariant eet. t l ve  Integer, l e t  C, denote the circle r = -* 
1 

X p E Cn (n > 2), then D1(p) consists of the closed annulus % bounded 

by C, and Cnm1, and therefom E1(p) = l$\Ik d n). Now let p, f C,. 

Then p, +Os as n +=, and it follows that D2(0) consiets of the entire 

Uait disc. Hence the 

b) Ijet f ( r2)  = 

or ig in  is 

[ z o  
not stable of order 2. 

t 

elsewhere. 

An annlysis similar to that given in the preceding example shows that 

the origin is stable of order 2, but not of order 3. If n is any positive 

Integer, it i s  clear that we may define a f'unction fa, similar t o  f above, 

80 t ha t  I n  the dynamical system rn determined by the equstion 

'isc + fn(x2 + iC )2 + x = 0, the origin is stable of order n, but not of 

order n + l .  

2 

appropriately combining the "J,, we n*ry define a m-1 system 

which is  m-stable, for every positive integer m, but nut stable of o*r 

Q) ( a r e  a, denotes the first infinite O r d i m l ) m  We may Suppose that 

f,($ 0, (n, k = 1,2, , m e  ). Bov QfW g(r2) y f,(r 1 for 2 



Bn = 

a' 
let 

-* 
= 0. Then r ,  the aynamical 
x - 0, coincides wi-t;h S, on 

Row let m be a flxed positive 

system deter- 

the aMulus 

integer, and 

(5) be a sequence tending t o  0. Then, for k suff ic ient ly  large, 

u (Bnln 2 m), and if yk E E ~ , ~ ( x , J ,  then yk +o. Hence C O )  is 

v. Iibpunov functions, 

12. The study of stabi l i ty  i n  dynan?ical systems has been faci l l tated 

by the use of generalized Llapunov i?unctions 161, [151. 

Definition. Let M be a compact posit ively lxvariant set .  A generalized 

IjBpunov function for M is  a non-negative function V defined in a posi- 

tively invariant neighborhood W of M, and satisfying: 

a) zf E > 0, theE the* exists A > 0 such that  V(x) > A ,  f o r  x 

not in 8 e ( M > .  

b) If X > 0, the= exists '1 > 0 such that V(x) < A ,  for 

'I 
c) If X E  W, and +, h 0, then  V(xt)  SV(x) .  

x e 8 (M). 

Conditions a) and b) may be succ indly  su~rxlsl.ized by the condition: 

If {xD) is a sequence in W, then V(xn) 4 0  if and 00 if xn +M. 

(In particular, V ( x )  - 0 i-r snd only if x E M.) 



(b) M possesccs a fundamen+al system of  absolutely stable c o p c t  

We shill usually omit the adJective "genelallzed" and speak simply of 

mpunov functions, 

The fo-Uowing t h o m u  is a purely topological version of one of 

Uapunuv's s t sb i l i t y  theorems. It may be fauni in [a] and [1>1. 

Theomm 3. T k  canpsct set M I s  Liapunov stable If a d  only if there 

exists a generalized Liapunov function f o r  M. 

X e m m  2. && V be e~ d w e e l i z e d  I;Lapunov flmction f o r  the compact 

positively invariant aet M. 

( 5 t h  > 0 )  

- k t  IdA = bc E XIV(x) L X I .  Then the sets 

constitute a fundamental system of neighborhoods of M. 

This i s  an easy consequence of the definition. 

13. A generalized Liagunov fbction is not necessarily continwus, 

(although it i s  always possible, in the  case of Lispunov stsbi l i ty ,  t o  find 

The role of con- a Iihpunov functian which is continuous on every orbit) .  

t inu i ty  of the generalized Lispunov function is demonstrated by the following 

theorem. 

meorern 6. && M be a couxpsct subset of X. Then the following a= 

equivalent : 

(a, There is a neneralized Lia~unov function V f o r  M which is con- 

tinuom i n  sane neighborhood W of M. - 



( c )  H ia sbsolutely stable. 

M. We show (a) =a (b) ==> ( c )  =-> (a). (a) ==> (b)t Since x is 

local ly coqxxct, we may ass- that W is compsct. sing the notation of 

Ienm 2, l e t  q > 0 such that W ( W. Then [Wh 10 < A  < r)) is a funds- 

~aental system of compact neighborhoods of M. We show that each W is 

absolutely stable. I& 0 < A  < Q let x E 5, and let  y E D1(x). Then 

there exist xn +x, tn 2 0, such that x t 3 y .  How, x E W so 

'1 

A 

n n  A' 
6 W c W, 

1\ 
for n L no. Then V(xntn) d V(xn), and by continuity of V 

on u, it f o u m  tbat v(y) s v(x). That is, if A < D ~ ( w . )  C uA. 
Bow, l e t  a be an ordinel number, and suppose tha t  D (W ) (  W f o r  a l l  

k < q, and all ordinals p < a. 

E:(\) c Who By an argument similar t o  that above f o r  D1, ue obtain 

D&) ( Who 

P A  A' 
Then, E (U ) ( W ,  and therefore BEL.  

Since a is arbitrary, the sets W a= absolutely stable. A 

(b) .e=> (c). Iet y denote the f l rs t  uncountable ordinal number. 

8ince D is a transit ive prolongation, (c) follows lmmedistely from 

corollary 2. 
T 

(c) ==> (a). Suppose tha t  M i s  absolutely stable. Then, f o r  each 

dpdLc r a t iona l  number A = j/2" (n = 0,1,2, ...; j an integer such thst 

1 S J ;h 2n), we construct 8 set W 

borhood of M, (2) '33 A < A 8 ,  W A C  i n t e r io r  W,,, (3) WA is absolutely 

stable, and (4) n{WAIA a dyadlc rational) = M. 

such that (1) WA I s  a compact neigh- A 

To see that swh a construction is possible, first obtain 8 fundax?ntSl 

I1 = o,l, o . . ,  such s y e t e m  of compact absolutely stable neighborhoods W 
1/2"' 



fbat w C interior w n = 0,1, ... . Thie is possible by vir- 
lp+l 1/2n, 

tm of CoroySry 2. Row, t o  defiry3, for example w observe that W1 
3N 

l e  8 comgpact neighborhood of t h e  absolutely stable s e t  Wl12. m n ,  agsb 

w3/4 Of 5 / 2  3/4 

by Corollaq- 2, we m y  find an absolutely stable compact neighborhood 

such that W < Interior of W1. Proceeding in this  

nSuxEr, we can define the  sets 

ppoperties. 

Wk (A a dyadic rationel) with the mquil.ed 

IT x E W, define V(X) = inf hlx E 51. C l e a r l y  ~ ( x )  = o if and 

only If x E M. kt x f W1 and le t  t > 0. We show Y(xt) d V ( x ) .  Sqppose 

V(&) >V(x) .  Then there are dyadic rcrtionals A and A' with 

V(xb) > A > A*  > V(x). 

rt B D~(x) C D,(w,,) C 5:. mat is, ~ ( x t )  s A*, which is a contradiction. 

Then x E W,,, and, f o r  any ordinal number a, 

 ina ally we show that v i a  continuous on q. E not, then for some 

[x,} in < such that x € $, 
(I) IT(%) + T V  < Z  o r  (ii) v(xn) + r :  >T. case (i), l e t  A, A' be 

dyadic rationals such tbat ?'  < I,' < A <?. 
AI' 

for n s&ficiently large. Since wAI C 5, we have xn E uA, and since 

is closed, x E W which is a ccmtmdiction. In  case (it) let A, A* 

(say V(x) c T), there exists a sequence 

Then x 4 Uk, and xn e W 

A, 

be dyadic ~ t i O ~ l S  With f < A < A' < TI. 'Shen V(Xn) > A' for n S u f f i -  

ciently large, a d  xn4 Wx,. Row, x E W A C  $,. But Xn -)x, and since a$ W;k,4 

x 4 c,* Again we have reached a contradiction, and the proof is completed. 

14. In  conclusion, we =mark that tbe  developmmts in t h i s  and tbe pre= 

ceding chapter could just as well have been applied t o  sny semi-prolongation 
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$ and the swcessive prolongatlone Qa obtained by alternate applica- 

tiorre of d and a. Then we VQUld have a notion of "\-stability" 
defined by %(M) = M. 

of a eemi-prolongation Qo, the snrzUest t ransi t ive prolongation Q con- 

bidng Qo, and a continuous non-negative function V with the proprty 

that V(y) S V ( x )  if y E Qo(x), (see Iemma 1 i n  [I]). The proof is an 

axact paraphrase of the proof of Theozlem 6. 

mark~~ in Chapter v1II. 

I n  particular, Theorem 6 m y  be fonmrLated in terms 

We  hall mke use of these re- 

VI. !Che dusli ty between boundedness and s tabi l i ty .  

15. The dyl3amical system is said t o  be bounded o r  Iagranae stable - 
w +(x) is couxpact for every x E X. It is natural t o  generalize 

th is -  notion as follows. ~f a is an ordinal n-r, we say that  V i e  

M e d  af order a, or 

This  is easFly seen t o  be 

--- 

vheaever A isconrpact. 

a-bounded, ii D (x) is CouipCt, for every x E X. 

equivalent t o  the assertion t h a t  D ~ ( A )  is compact 
a 

$# IE! said t o  be absolukly bounded if it is 

a-bamded for every ordlnal number a. 

In this section, we assume that X is second countable (as w e l l  as 

locally canpsct metric). 

a kind of d t s l l t y  between boundedness and stability. 

established by mans of the following device. 

tbe ae&lve semi-orbit of x. 

Under this assumption, it turns out tbt there is 

This dusllty may be 

For x E X, l e t  E i ( x )  = y-(x), 

lie m y  define negative prolongations DG i n  



'a mRnner completely analogous t o  the definitions of D that is, w let d 
= f i i ,  = J'Di, a d  so on. m n ,  f o r  any 0-1 n m b r  a, 

= &  U E;), where E;= J D -  ye nate tkt x E Di(y) ii end 
B < a  Da 

oaly if p E Da(x). 

(for a cop;pact negatively invariant set M), Dz(M) = M. Clearly all 

the theorems on the pmceding sections nrry be phrased so as t o  apply t o  

negktive stability.  

generalized Liapunuv function would =ad: V ( x t )  h V(x), f o r  x E X, 

We may tben define negative s tabi l i ty  of order a 

Y 

particular, condition c )  in the definition of 

and t a G ]  

ut x" denote the one-point-compact~ication of X. men 

2 = X U (a), whem Q) denotes the point at infinity. !Be ass&ion that 

X I s  s e c o d  countable guarantees that x" is metrizable, ([31, p. 125). We 

extenti the -mica1 syatem 9 to a meal s y s t e m  

fining cot = a, for a n  ~d t. Then (a) is a canpct  (positively and 

$' on j z  tie- 

we also distinguish notationally by 8 t i lde .  

!be duality between boundedness and stabi l i ty  is embodied i n  the next 

theorem. 

TheoRm 7. #is c a-bounded if and only if [a) i s  nepativeQ 

a-stable . 



a-unskbk, then there am sequences (xn] and (y,> in ]I, w l t h  

xn+m, yn E E“ ( 
Ict X be a compact subset of X such t h a t  Da(y) c K?. Since a, E 5 (y), 

it follows from tbe defining properties of a pmlongation that there. is a 

I e s&) fl bK. %en there are sequences yn + y ,  

tp e 

(s, <a), ana yn + y  E X. m n ,  a, B Ea(y). NOW, 
an xn 

Q 

zn +z such that 

(yn), (pn C a). Bow, it follows by an easy induction tha t  e, 
I,(y) = E~(Y) ,  f o r  a l l  p < a  and a n  y E X. Then z E ~ ~ ( 7 )  n aK. m i s  

ie a contrsdiction. 

16. It f o l l m  from llheorern 7 t h a t  every s t ab i l i t y  theorem has a 

boundedness theorem as i ts  counterprt. 

Cc~n%inuing i n  t h i s  vein, we define 8 (pemralized) Liapunov function 

at  - infinity t o  be a positive real-valued function V 1  

mnt of a compact subset K of X satisfying 

defined i n  the comple- 

a) Vf is bounded on every compact set. 

b) The set (x(V’(x) d X) is a relatively compact subset of X. 

c) E x E X - K, and t Z 0, then V1(xt) 5 Vt(x). 

Ewvalently,  we nray consider an extended res1 valued function V, de- 

f a d i n a n e i g h b o r h o o d  of a, in %, smhthat  ?(a) = *, andsuch tha t  

T(xJ +I- if and o m  if xn +a. 

It follows tha t  9 is a generalized Liapunov function at inf ini ty  if 
1 and only if v“’ = - is a %e&ive” (generalized) Liapunov function for  the 
v“ 

set (45). 
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Psbg t- observation, it I s  easy t o  pmve the following theorem, 

which are the duals of Theomm 5 snd 6. 

l l l e O ~ ~ ~ 8 .  The aynami cal system is bounded of order 1 if and 00 

If there exists a generalized Liapunov function at  infinity. 3) 

Theorem 9. The following statenrents are equivalent. 

4 -- ical  systen: is absolutely bounded. 

b) 

c )  

Every compact s e t  is  contained i n  an absolutely stable compect set. 

There exists a continuous (~enemlized) Lispunov function a t  infinity. 

Vnc. Aaytuptotic s t ab i l i t y  and ultimate baundecbess. 

1T. The compact set M is said to  be asylllptotica.lly stable if it i s  

Liapuno~ stable, and if there exists a n e ~ b o r h o o d  W of M such that 

d(xt, M) 3 o as t 3 =, for  x E W. last condition IS ew-rrt 

t o  the statement that n(x) is a non-empty subset of M, for each x E W. 

% M is asymptotically stable, the Largest neighborhood W of M such 

that a(w) C M is called the region attraction or  -- donrain or asymptotic 

stability; W is an open subset of X. U W = X ,  then M is s a i d t o  be 

asymptotically stable -- i n  tb large, or coq le t e ly  stable, [5]. 

If M is asymptotically stable, then, (since X is locally compact), 

It is known tha t  M is unifolnily asymptotically stable, [6, p. 381. T b t  is, 

If A I s  a conqect aubset of W, and U IB a neighborhood of M, then 

there is a T 9 0 swh that A t (  U, for a l l  t a T. 
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Theosem u), If the compact set M I s  asymptoticaUy stable, it is 

abolutely stable. Ddeed, M is asymptotically stable if and only if 

there exists a ccprtlnuoua Iitapunov function V for M such that 

~(rt) <v(x), whenever x 8 M, a s  t > 0. 

Pmof. Buppose tbat M I s  asymptotically stable. kt W be tbe 

d-in of asyPFptotic stabi l i ty  of M, and l e t  U be a relatively cornpact 

rreighborhod of M, with ec W. If x E: W, deflm Y(x) = sup d(xt, M).  

[6, p. %lo4) W! 
t i c  0 

It i a  known ttst Y is a Iitapunw function for M, 

rhmr tha t  Y is continuous on U, kt x E U = M, and suppose d(x, m) = 2c > 0. 

fet T > O  be such that IRC Se(M), for By t h T. Suppose (x,) Is a 

eequence in U such that x, +I. We show t h a t  Y(x,) Y(x).  Iet 

t T P 0 be such that Y(x,) = d(\Tn, M), and Y(x) = d ( s ,  M). Since 

0 S Tn < T we m y  suppose ?, + T ' L 0. 

We show that Y(x) = d(xr', M). Obviously Y(x) I d(xr', M). Sugpose that 

a x )  = a(=, M) > d(xr', M). Ut X > O  such that d(x?', M) + 3X < d(xr, M). 

Ibr n sufficiently large, 

and d(xnTn, xr') < X. 

which is a contradiction. Since Y is dmys continwus on M, Y I s  con- 

n' 
Then Y(x,) = d(xnTn, M) + d(xr ', M). 

d(xnTn, M) + X < d(xc, M), d(sT,  xc) < A, 

Then it fo l low that d(xn?, M) >d(xn%,, M) = Y(xn), 

tinuous on U, and by liheorern 6, M ia absolutely stable. 

The function Y Is not, in geneml, strictly decreasing on orbi ts  of 

points outside M, as we require i n  the statement of the theoma. However, 

it I s  e a s i l y  verified that tk function V defined, f o r  x E: U, by 

This function, which is due t o  Ncnrmlne and Yoshlzau~, i.8 a Ltapunuv f'unctlon 
for M vhenever M is l-stable, 



-re a is any positive, ncm-lncreasirg, surrmsble function, is a con- 

tlnwu8 Iiiapunov frmction fo r  M satisfying V(xt) < Y(x), f o r  

X G U - M ,  Snd t > O .  

Suppose conversely, that V I s  a coxttinuaus Liapunav function satisfy- 

ing V(&) C Y(X), for X E U - M, and t > 0, vzlere U is a neighbor- - & x. iet q > O  -= &sen SO that w - [X i vixj s '1) is a cam- 

pact neighborhood of M. We show that n(W ) c M. By the defining proper- 

ties of generalized Liapunw fbxt ions ,  It is sufficient to show t h a t  

1). 
lim 

x a w  lim IT(&) = x > 0. kt z E ~ ( x ) .  Then V(Z) = L. m, ii 
T > 0, ZT e ~ ( x ) ,  and V(ZT) = X. mis is a contradiction. 

9 

~ ( x t )  = 0, for x E w ~qppose th contrary. Then, f o r  sone 
t ++o 

v t ++a0 

18. The ayrnrmical system is called ultimately bounded 1141 If O(x) 

ie a ~b~pempty, relatively conqact subset of X. 

Prooi. kt 5 and B be compact subsets of X such that Q(X) U A(  

<< p I C  e. Suppose the conclusion of the le= is false. Then there exist 

sequences (x,) in A and (t,) of positive numbers such tha t  (xntn) bas 

no convergent subsequence. Obviously tn + $00. Defln: Tn b 0 by 

x,,,?~ e B, We may suppose 

x: = xnTn +XI E B. ljet t' > 0 be such t h a t  x't' E B. Choose a compact 

neighborhood N of x1 such that  Et' c B. 
for all but a f in i t e  number of tbe ti. For x: E N, for n sufficiently 

but xnt 4 B fo r  0 < t ;Z t: = tn - 

Now, we claim that t' > t:, 



&?68 a= dual nations, in tbe sense of Chapter VI (provided that the spsce 

I[ ie second countable). As in Chapter V I ,  (D denotes the point at  inf ini ty  

in 2. 

!l!heorem ll. is ultianrtely baurded if and only if the point (a) 

I 6  Egatively asymptotically stable (in tk dynamical system $? ). 

Proof, 8wpose that is u l t i m t e l y  bounded. In order t o  show that 

I s  negatively asymptotically stable, we apply Theorems (14.1) and (14.3) (a) 

of I61 (modifled so as t o  apply t o  negative s tabi l i ty) .  Then, ue must show: 

a) Ilrem I s  a neighborhood W' of [a), swh t ha t  if x E If', and 

x p (a), then there is a t e R with xt 4 W'. 
b) If I' is a neighborhood of (m), then there is a I?ei@borhood W' 

of (m} such that  4(x - ")( x - w'. 

To prove a), let W be any compact neighborhood of O(X), and let 

U' = x  - u. 

Since X - R' is a canpact subset of X, b) is a consequence of 

Ielrmrr 3. 
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i 

Bow, suppose (a] is nes t ive ly  asymptotically stable. Iet H be 

a comgsct set in X such tbt W' - x" - W is tbe donrain of asymptotic 

atability of (m}, He show Q(X) c H. Y not, there is an x € X, and 

tn ++so such that xtn 4 %  E H'b Then, for n h no, xtn E W. Ifow let 

13' = 2 = (x)j U' is a neighborhood of a, and there exis ts  T > 0 swh 

that W ' t C  0, for t < -To But tn >T, for n sufficiently Urge, and 

therefore x = (xtp)(-tn) E U', which contradicts the definition of U'. 

19. S W  t o  Theorem 10 we have 

Theorem 12. Ijet X be second countable, and suppose that is ulti- 

laatelybounded. Then - 
(I) is absolutely bounded. 

(u) -re is a continuous generalized ~iapunov m c t i o n  a t  i d i n i t y  V, 

&?fined on the complenrent of a coplpact s e t  K, such t h a t  if x E X - K, and - 
t > 0, Vtxt) < v(x). 

(lit) Them exis t s  a compact set  M vhich is completely stable. 

u ) b  

let 

tha t  

Proof. Statements (1) and (ii) f a l l o w  irrrmediately by dualizing Theomm 

To prove (Ui), let K be a compact subset of X with n(X) c K, azld 

M = D(K), Since 9 i a  absolutely bounded, M is ccmpact. We show 

M is completely stable. 5 )  

w u  that D~ = D, = have D ~ ( M )  c D(M) = D(D(K)) = D(K)= M. 

Hence M i.8 l a tab le .  Since n(X) c Kc D(K) = M, M is completely stable. 

5) Actually, it can be shown that q ( M )  is canpletely steble. However, it 
is not in general true t h a t  K is aSymPt&iCally stable. See [9] for an 
interesting example of this phenomenon. 



20. Iemm 4. E M be asymptotically stable, and l e t  W be - the 

damin of asymptotic s t ab i l i t y  of M. - Iet IV be a canpact positive* 

Invariant set with M( 1c W. Then A is asymptotically stable , - 
Roof. Since n ( ~ )  C M C  A, it is only necessary t o  show that I 

I 8  Liapunov stable. Iet U be a relatively compact open set with 

a( UC i( W. Since U is a relatively compact neighborhood of M, there 

er iS ts  T > 0 such tha t  Ut c U, for all t 2 T. 

Then y E D1(x), for some x E A. Hence there exist sequences (xn) in 

X, and tn 2 0 such t ha t  xn +x, and xntn + y o  Y the sequence (t,) 

Is bounded, then y E N, since A is positively invariant. ZP not, 

tn L T, for n sufficiently large, and xntn E Utnc U, so y E E. Since 

U ia an arbitrary relatively compact neighborhood of M, 

!Fhe proof I s  completed. 

Now, let y E D1(H). 

we have D,(lT) ( 1. 

Bow, augpose that M is  completely stable. Then Iemme 4 tells u8 that 

any compact positively Invar ian t  superset of M ia also completely stable. 

Therefom?, it is reasonable t o  ask for a smsllest or  "minimal" s e t  which is 

coupletelg stable (that is, one which contains no non-empty proper subset 

with the samc property). Wi? vKU show that such a s e t  exists. First ,  

state! a lexuma, the pmof of which is l e f t  t o  the I..eader. 

Ieum 5. (I) - kt M be completely stable and l e t  t > 0. Then - Mt 
iS completely stable. 

Tat - 'Mala E 41 be a family of completely stable sets, Taen * 
M' - fl (Mala E 4)  is not V~CUOUB, and is  completely stable. 



Theorem 13. Assume the  canpact positively invarl&nt set M t o  be - 
completely stable. M* = n(Mt[t P 0) is the m-ta(mrl completely stable 

m r .  since the collection ~f seta (%It 2 0 )  constitutes a decreasing 
* 

iamily of non-empty compact sets, M is non-enpty, ad, by Iempls 5, M* is 

completely stable, It is easily shown t h a t  M* is positively and negatively 

Invariant. Suppose that  H Is a ccmphte ly  stable proper subset of M . kt 

7 B H" = a, and let U be a neighborhood of B wlth y 4 U. Iet to > O  
* * * 

rwh t h a t  M t ,C U, 

* 

Then z = y(- to) E M and y = "to E M t o C  U, which 

ie a contradiction. 

21, Asymptotic s t ab l l l t y  cannot be described In terms of imnzbnce 

under an abstrsct  prolongation, as the following ccoleiderstions indicate. 

8uppose tbere were an abstmct prdmgat ioc Q swh tbat Q(M) = M If 

ard only If M is asymptatically stable. Bow, consider a comlpect invariant 

set M, such that M = n (%In =I 1,2, ... ), *re esch % ie asamptoti- 

oally stable, but M is not asymptoticaUy stable. Such exist; see example 

C) in Chapter IV. men Q(M) C Q(%) 5: s, so Q(M) C n (SI n=l,2, ... = M, 

apd M vould have t o  be asymptotically stable. 

lhertbeless t b e  prolongations Do do t h r o w  some l i g h t  on the notion 

Oi asymptotic stabil i ty.  For x E X, and a an ordins1 number, deflae 

D$x) = Da(x) - r (x). 

of Da(x). Of course D$x) may be empty. 

+ Then DA(x) is, so t o  speak, the "mn-trivial part" 



'Pheorem 14. M is asymptotically stable, W is  the domain 

of asymptotic stabil i ty,  then - DA(W) c M, for every ordinal Dumber a. 

Conversely, if there is a neighborhood W of M such that, f o r  every 

x 6 Y, 

empty subset of M, then M is asymptotically stable. 

there exis ts  an ordinal number a 4 1 for  which DA(x) is a non- 

Proof. Suppose M is asymptotically stable. kt W denote the domain 

of asymptotic stabil i ty.  

mtabllity, it i s  easy t o  show that, for  x E: It, D1(x) c y+(2) U M. That 

is, D ~ ( x )  C M. 
ami a n  x E W, D*(x) C M. It follows immetuateu that  u y E: E;(x), then 

eithr y E M, or y E r (x). 

Then, using the pmperty of uaifonn asymptotic 

 ow, kt a be any ordinal number. Suppose for a n  p < a, 

+ B 

lkw, suppose x E U, and y E Da(x). Then, there a= sequences xn +x, 

yn -,y with yn 6 %(xn). 

If not, then yn E r (xn), and y E D,(x) = ?(x) U D i ( X )  c f (x) U M. !Chat 

3cf infinitely many yn are I n  M, then y E M. 
+ + 

is, DJX) c u M, ami tbt3mfoR D;(*> c M, f o r  8u x 6 w. 
To prove the second part of the theorem, observe t h a t  if z E M, then 

t 
Dl(Z) 

x 6 Y - M. We show that n(x) c M. Ut a be an ord ina l  number f o r  which 

DAG) # $  and D h ( x ) (  M. Then Da(x) = p(x) U DA(x) c T(x) U M. There- 

fore, since n(x) c Da(x) 

whet  is the same thing, x 1 n ( x ) .  First, we show that x is not periodic. 

U it is, let A = t.'(x), 

f (z) U Di(z) ( M U M = M, SO that M is Liapunuv steble.  kt 

+ 
it is enough t o  show that n(x) n r (x)= jif or, 

and let B be e coaqTsct neighborhood of A with 



VIP. Strict s t ab i l i t y  and boundedness. 

22, Zn this chspter, X denotes a region of euclidean n-dinremiom1 

apace e. Moreover, the dynamical system 'J' under consideration is assmd 

t o  consist of the solution curves of the autonomow system of different ia l  

aq\Patiom 

vhere x and f are n-ctors. We assume that f is defined and continuous 

in X, tbt P(X) = ~(lbll), and satisfies a local Lipschitz condition 

in X. 

on tbe right si& of (l), and form a dynamical s y s t e m  in X 

Then, if X E  x and t E R, by xt we mean T(X, t) I is the 

uniqu? solution of (1) satisfying ~ ( x ,  0) = X. 

Under these assmptions, the solutions of (1) depend continwwly 

[lo, Chapter I]. 

Ut 8 > 0, a k o l u t l o n  of (1) mean an absolutely continuous - 
c u r e  in X satiapring 



for all t o R for which t(t) I 6  defined. 

If x Q X, let T6(x) be the set of  8-golutions $ of (1) satisqring 

*(a -x. 

He&, we introduce the follovlng subsets of X: 

and 

The set P(x) consists of the points y for which, for any 6 > 0, there 

ie a k o l u t i o n  such that *(a) = x and q(t) = y, for some t Z 0. 

d e o  that y E p6(x, t) if and only if x E p6(y, -t)# and that 

P&x, t + t') = P8(P6(X, t), t'). 

As an example, consider a parsllel flow in the plane, defined by the  

2 equxtions il = 1, %2 = 0. If x E R , then P(x)  coincides vlth the 

positive semi-orbit T(x) a 
A seccmd example is furnished by the equations of a harmonic oscilla- 

tor with damping, Rl = x2, P2 = - x1 - f x2, (f  > 0) .  Here P(0) = [ d , 
u b e ~  (0) den0teS the origin, which is a stable focus. 

2 Consider next a center, given by R1 = x2, f2 = = xl. U x E R , ard 
8 > 0, any point y E R2 may be Joined with x by a 6-.solution. Then 



23. 'phie following lemmr ie an easy consequlence of the contlnuou6 de- 

pendence of t h e  solutions of (1) on tbe function f '). 

The next le- plays a cent& role in dl subseqEnt considemtions. 

Iemnm 7. (xn) (yn) be sequences in X with xn + x  

rn +YO - Iet 6n be a sequence of positive real numbers with 6n +O, a= 

a-se yn E P (x ). y e  ~ ( x ) .  6a 
proof. y = x, tkre ie nothing t o  prove, 80 suppose y # X. Iet 

8 > 0. We show y E P6(x). hypothesis, the= exists for every n, a 

8m-801ufii0n qn of (1) satisfying $,(a) = xn, qn(tn) = yn with tn > 0. 

I& U and V be =?stively compact disjoint mighborhoods of x and y 

mspectively, and sqppose that xn E 0, yn E V, and 6n<8b. Iet 

t* .I inf tn. 

of E U T ,  alldliet O < t o S t l  euchtbat U t c A  and V ( - t ) c A  for 

O S t L -  2 '  

Uarma 6 tells us tha t  ti >O.  Let A be a canpact neighborhood 

Bow we define the followlag sequence of functions: 

for - - ;Z t s tn - -  to 
2 2' 



clearly, ~ ~ ( 0 )  = x aad vn(tn) = y. we show tht qn is a 

8-6olution of (l), for n sufficiently large. Diffexxrtlating, we obtain 

o s t s -  2 

f s t s tn - 

 hie holds a h s t  everywhere i n  10, tn]. NOW 

In order t o  show that qn is a &adution of (1) for large n, it IS 

tbenfore only necessary t o  show that llf($n(t)) - f(cP,(t))l! + 0, as n + =. 

m, cp,(t) = $n(t), for  - 5 t tn - to 2, eo we need only consider 
2 

the intervals = Eo, TI, and I~ = [tn - 2, tnl. ht R be a reb- 

tirely compact neighborhood of A. 

= apply IeLmIn 6, to Since Ut< A and V(- t )  c A, for 0 d t d T, 
and obtain $n(t) E N, f o r  t E x0 u In. Since 

IbJt) - tn(t)ll 6 -(lixn - 41, IIYn - YIII  = =Y f b a  a compact s e t  1 
euch that gn(t) E K, for t E Io U In, and n large. Since f is uni- 

io* continuous on K, we obtain l l f ( $ n ( t ) )  - f(qn(t))ll + O  as n +-. 
!be prod I s  completed. 



24. hmma 8, P is a transitive pmlongation. 

P obviau~ly sat isf ies  condition (a), and (a) follows irrrme- 
&lately f m m  Ienma 7 by Putting an - 0. !Lb show that (r) holds, let A 

be a compact subset of X, let x E A' and l e t  y E P(x)-A. men there 

exists a sequence of numbers 6,: > 0, 8= 0, and 8--eolutions qn of 

(1) with *JO) = x and 

8wh that 

rqppose yn + y E a. By Iempnr 7, y E P(x), and (r) I s  proved. 

Y 

= Y, where tn >O. Let 0 <?n S tn 

yn = qn(Tn)€ a A. By choosing a subseqmnce if necessary we may 

'SO prove that P IS transitive, l e t  y E P(X) and z E ~(y). Then, 

If  b > 0, the= are B ~ O ~ I & I O ~  wl 8Ild w2 with ql(0) = X, ql(tl) y, 

$2(0) = YI *z(t2) = ' 1  tl# te '0. Then 

Corollary 3. If M I s  c o m c t ,  then P(M) is closed and positively 

invariant. 

The compact s'et M i n  X ir, called s t r i c t l y  stable If, fo r  any E: > 0 

fbere exist 8 > 0 and q > 0 such t h a t  P6(SS(M)) c gE(M). 

The ayllanrical system determined by (1) is called s t r i c t l y  bounded 

if, for any Q >O, tbere exlet  8 > O  and T > O  such that bll < u  



'pbeorem 15. p& M be a compect subset of X. Then M is s t r i c t l y  

8 - U  If and onls if P(M) - M. 
Roof. & !theorem 2 and kmne 8, P(M) = M if and only if, for every 

neighborbod W of Mj there is a Ileighborhood U of M such that 

P(U) c #. We may suppose that and a m  compct. Then an application 

of hlrmrp  7 tells us that Pg(U)c W, for some 8 > O .  Thst is, M is s t r i c t l y  

stable. The c o m r s e  is obvious. 

Cozrol~ary 4. = % (n = 1321 . . . ) be a decreasing family of compact 

M = fl yns invariant sets,  each of which is s t r l c t l y  stable. 
IP1,2,..., 

6 t r i c t ly  stable. 

&plying the duallty prlnciple between s t ab i l i t y  and boundedness, dis- 

cussed i n  Chapter VI, we obtain 

meorem16. ~hedynsmi ca l  system Tis s t r l c t l y  bounded if  and only 

- if P(B) I s  campact whenever B I s  compact. 

The last theorem in t h i s  section is the s t r i c t  s t ab i l i t y  analogue of 

Theomm 6. 

Omitted. 

!l?he proof is similar t o  t h a t  of Theorem 6, and is therefore 

(See the conclulifq rennrrka i n  Chapter V.) 

'I S t r ic t  s tab i l i ty  is also called s t ab i l i t y  under persistent perturketion6, 
total - stabi l i ty  and stabi l i ty  under perturbations. Similsrly, s t r l c t  
boundedness i s  called boundedness under 7 persistent perturbations or t o t a l  
boundedness [14]. 



Thaorea17, E M be a compac t positively invariant set. Then the 

following are equivslent. 

(a) M is strictly stable, - -  7 

(b) There l e  a fundamental sequence of strictly stable nelj&borhoods --- 

( c )  There exis ts  a Iron-negative continuous function V defined on a 

mighborhood V of M such that V ( x )  = 0 i i a n d  only if x E M and such -- -7 

tht - T(y) s V(X) whenever y E ~ ( x ) .  

25. How, we sb l l  indicate tbe relationship between s t r l c t  stability 

awl boundedness with some of tbe stability and bouudednese notione studied 

T h e o r e m  3.8. (I) Y tbe compact irrvarlant set M is asymptoticalQ 

Btsble, then it is s t r i c t l y  stable. 

(%%) M is strictly stable, it Is absolutely stable. 

(iii) n! the aynsmi ca l  system 9 I s  s t r i c t ly  bounded, it I s  absolutely 

bounded. 

Proof, (i) We show: if E >O, there exist f > O  and 6 > 0 ewh 

t h a t  x e S(M, 6) implies P (x, t) c S(M, E )  for a l l  t L 0. We may suppose 

a t  S(M, E )  is contailled in the doplain of asymptotic s t ab i l i t y  of M. 

Choose 8 BO that 0 < 8 < 

B(M, e ) t  c S(M, 3, for t 2 r. 

c 

and 9(M, S)R+C S(M, $), and 

Ismma 6 w may choose C > 0 so t h a t  



0%- 

x Q S(M, 8)  and g E Pf(x, t), 0 L t li ? implies d(xt, y) < 8/2. Then, 
E 8  x e S(M, a), 0 t S?’ R b a ~ e  P (XI t)( S ( M , p + z  ) c  S(M, E). c 

8 mover, since rc e S(M, /& P&X, z) C S(M, 8) .  MW since 

P (x, t + ?) = P (P (x ,  ?), t), 

far 0 S t S 2r, and Pt(x, Z r )  c S(M, 6), whenever x E S(M, 6). The 

canclusion follows by an easy induction. 

ye obtain lmmdiately P (x, t )  c S(M, E), c f f  f 

(U) U x f X, and r is  the first uncountable ordinal, then D x To 
ie the e a s t  transit ive prolongation containing r+<x). Since 

$(x) C ~ ( x ) ,  and P is a transit ive prolongation, D+X) c ~ ( x ) .  Therefore, 

If P(M) ( M, Dr(M) c M and the assertion follows fmm (I). 

(iii)  his IS an immediate consequence of Theorem 16. 

mne of the  c o m r s e s  t o  the statemmts i n  meorem 18 is valid. 

M - n %, whelle each % is asymptotically etable, but M is not. 

b l e  c) in Chapter IT.] Then each % ie s t r i c t l y  stable, and Corollsry 

4 tells us that M is s t r i c t l y  stable. A center in the plane pmvides an 

example of an abr;olutely bounded d m c a l  system which is not strictlqi  

bounded; here the origin l e  absolutely stable a d  not s t r i c t l y  stable. 

let 

26. Actmu,  using the method of proof of Theorem 18, it may be shown 

[ll], that asymptotic s tab i l i ty  implies s t r i c t  asymptotic s t ab i l i t y  -- that 

it3, the= is a neighborhood W of M such tha t  if E > 0, then there exist 

8 and ‘I > O  such tbat x E W implies P, (x t )c  SG(M), for t h T. Con- 

veI’8ely, s t r i c t  asymptotic s t ab i l i t y  implies asymptotic stabi l i ty .  



Strict aeymptotic stability (and tbemfore asyqptotic stabil i ty) can 

ba conveniently characterized In t e r n  of a set  which is formed in an 

analogous uanner as the onre* limit set. If x E X, we define 

$(x)  = n ~(x t ) .  since ~ ( x t ' )  C ~ ( x t )  henever t' > t, it follows 
t a R  

tbat $(x) = n ~(rt). 
t L to 

O u r  finnl theorem chazacterizes s t r ic t  asymptotic s tabl l i ty  by means 

O i +  

Theorem 19. The compact lnvariant  se t  M & (s t r ic t ly)  asymptotically 

stable If and only Ff there is 8 neiRhborhood W M such that 

QpWK M- 

Pmof. Suppose M irr strictly ssgnqrtotlcslly etable.  We will flxl a 

rrighborhood w of M such that %(w) ( s ~ ( M )  for every E > 0. moose 

V M in tbe definition of strict asymptotic stability, and let E > 0. 

(boose 8 and ? such t b a t  P&x, t)( Se(M), for t h ?, and x E W. 

m n  P&, t + T) C s ~ ( M ) ,  fo r  x B w ana t 0. NOW 

P@, t)C P&P&X, r), t) =I P&X, 7 + t ) C  s ~ ( M )  for  t 2 0. Then 

Pa(=) c SE(M); 1% follows that P(Xr) c Bo(M), and then g ( x )  c aE(M). 

Conversely, suppose that  W is a comgact neighborhood of M for which 

s(W)c M. We show that if E > 0, there &st ? and 8 > O  such that 

P&x, t) c SE(M), for t 2 ?, and x € W. If not., there  are sequences 

6 w, 8n 40, tn + SO, and y, E Pql(xd t n )  such that d(yn, M) - E > 0. 

Without loss of generality, suppose yn -+ y and xn + x  E W. L e t  T > 0, 

and 6 ~ ~ 6 e  d l  tn > !bw# yn e (x > tn) p6 (p6 (xn, '1, tn v ) *  
8n n n  



But d(y, M) = e, and this contladicta g ( W )  c M. Q.E.D. 

27. In tbe two following diagrsms we aumoarize the relations between 

the v a r i o u  t y p e s  of stability and boundedneas discussed in this pper. 

Except where indicsted, the c o m m e s  of the implications are not true. 



asymptotic stability m- strict asymptotic stabllity 

I I 
strict &billty I / (tatel stability) 

0 
ab6olute stabl l i ty  

I 

--strict ultluate boundedness ultinrrte boundedness 
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